

Naturbasierte Farbstoffe für HighPerCell® Cellulosefasern

Marc P. Vocht, Antje Ota, Elias Feindler, Frank Hermanutz Laubholztage 2024, 21.06.2024

DEUTSCHE INSTITUTE FÜR TEXTIL+FASERFORSCHUNG

Deutsche Institute für Textil- und Faserforschung

- Eines der größten Textilforschungseinrichtung Europas
- Gegründet 1921, Stiftung des öffentlichen Rechts
- 3 Forschungseinrichtungen, 1 Produktionsgesellschaft (ITVP)
- Anwendungsorientierte Forschung vom Molekül bis zum Produkt auf 25.000 m²
- Forschung mit industriellen Pilotanlagen, Fokus Technische Textilien und Life Science
- Anbindung an Universität Stuttgart und Hochschule Reutlingen über 3 Lehrstühle und 2 Professuren

Kompetenzzentrum Biopolymerwerkstoffe

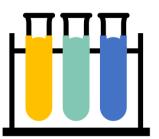
BiopolymereEtablierung neuer Ansätze

Nachwachsende Rohstoffe

- Nachhaltige Materialen aus Cellulose, Chitin, Keratin, Alginat
- Smarte, rezyklierbare Lösemittel

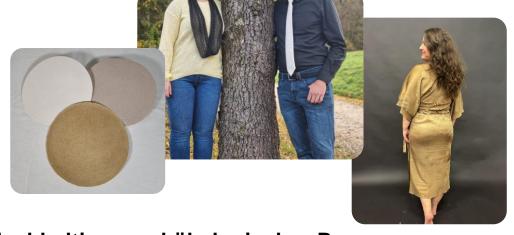
Verarbeitung Biopolymeren

- Herstellung von
 Biopolymerfasern für den textilen und technischen Einsatz
- Folien und Beschichtungen



Nachhaltigkeit und Recycling

- Fasern als Verstärkungsfasern
- Carbonfasern aus Cellulose
- Sortenreine Verbundwerkstoffe
- Bioflammschutz-Fasern



HighPerCell® technology - Spinning of Cellulose Filaments

- Nachhaltiger und ökologischer Prozess
- REACH-zertifiziertes Lösungsmittel
- Rückgewinnungsrate >99,5%
- Wassersparendes Verfahren (kein Abwasser)

HighPerCell® - Cellulosefilamente

Was macht diese Technologie einzigartig?

- Kontinuierliches Filamentspinnverfahren
- Thermisch stabiles, inertes Lösungsmittel
- Frisches und recyceltes Lösungsmittel
- Hohe Polymerkonzentration in der Lösung
- Geschlossener Kreislaufprozess
- √ Hohe Flexibilität der Fadeneigenschaften
- √ Hohe Variabilität des Ausgangsmaterials
- √ Attraktive Filamentverarbeitungsschritte

F. Hermanutz, F. Gähr, E. Uerdingen, F. Meister, B. Kosan, Macromol. Symp, 2008, 262, 23–27; D. Ingildeev, F. Effenberger, K. Bredereck, F. Hermanutz, J. Appl. Polym. Sci, 2012, 4141–4150; D. Ingildeev, Dissertation Universität Stuttgart, Aachen: Shaker Verlag, 2011; K. Mundsinger, A. Müller, R. Beyer, F. Hermanutz, M. R. Buchmeiser, Carbohydr. Polym, 2015, 131, 34–40; J. M. Spörl, A. Ota, S. Son, K. Massonne, F. Hermanutz, M. R. Buchmeiser, Mater. Today Commun, 2016, 7, 1-10; J. M. Spörl, Dissertation Universität Stuttgart, Cuvillier Verlag: Göttingen, 2016. F. Hermanutz, M.P. Vocht, N. Panzier, M.R. Buchmeiser: Macromol. Mater. Eng., 2019, 304, 1800450. F. Hermanutz, M.P. Vocht, M.R. Buchmeiser, in: M.B. Shiflett (Ed.), Commercial Applications of Ionic Liquids, Springer International Publishing, Cham, 2020, pp.227-259. A. Ota, R. Beyer, U. Hageroth, A. Müller, P. Tomasic, F. Hermanutz, Michael R. Buchmeiser. Polym. Adv. Techn. 2020, 1-8.

Färben mit Earth-Colors®

- Die Färbbarkeit von HighPerCell®-Gewirken wurde mit dem naturbasierten Earth-Colors®
- Nachhaltige Produkte aus landwirtschaftlichen Abfällen anstelle von Produkten auf Erdölbasis
- Farbstoffe auf Schwefelbasis

Diresul® Earth-Oak

manufactured using 100% ALMOND SHELLS from the food industry

Diresul® Earth-Cotton

manufactured using 100% COTTON
PLANT residues from the cotton industry

Diresul® Earth-Sand

manufactured using 90% BITTER ORANGE residues from the herbal industry

Diresul® Earth-Clay

manufactured using 90% BEET residues from the food industry

Diresul® Earth-Forest

manufactured using 90% SAW PALMETTO residues from the herbal industry

Diresul® Earth-Stone

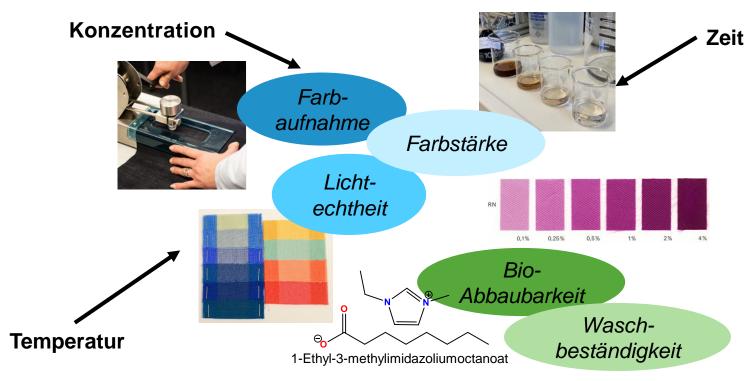
manufactured using 70% SAW PALMETTO residues from the herbal industry

Verfahren zum Färben mit Earth-Colors®

Waschen der Gewebe

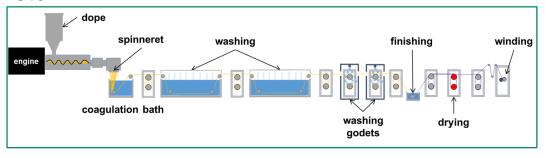
Probenvorbereitung Färbelösungen vorbereiten

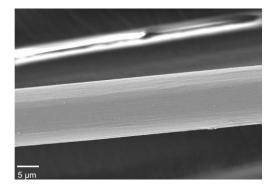
Färbung


Fixierung mit H₂O₂

Trocknung

Prozessbedingungen

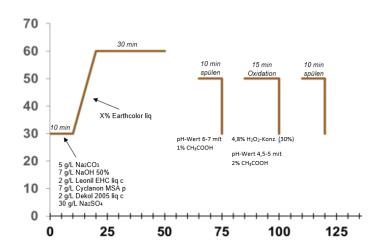


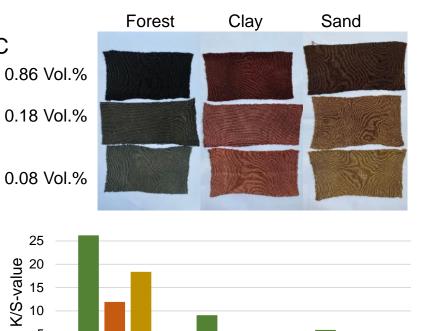

HighPerCell® Faserfilamente

Rohstoffe: industrieller Holz-Zellstoff

Spinnparameter	
Degree of polymerisation (DP _{FeTNa})	670
Aschegehalt	< 0.1 wt%
Spinndüsenlöcher	64 / 250
Luftspalt	10 -15 mm
Dope Temperatur	65 °C

Eigenschaften	HW Pulp
Feinheit [dtex]	2.1 ± 0.2
Zugfestigkeit [cN/tex]	30.0 ± 2.0
Buchdehnung [%]	12.5 ± 1.5

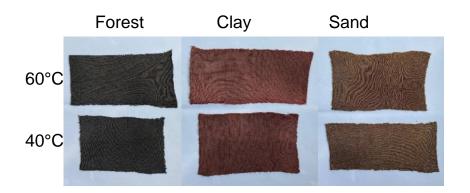

Färbung - Farbstoffkonzentration



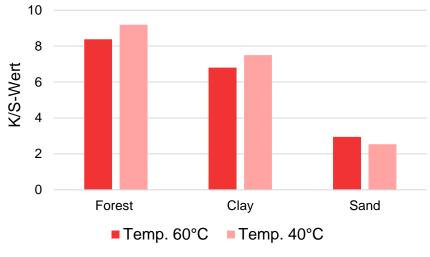
Variation der Farbstoffkonzentration bei 60°C

• Standzeit: 30 min

Kochrezept von Archroma:

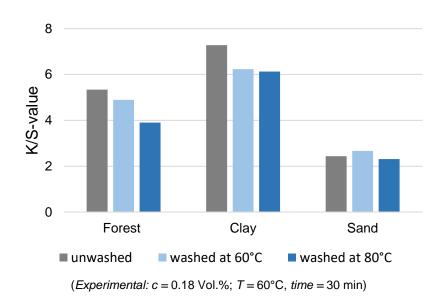


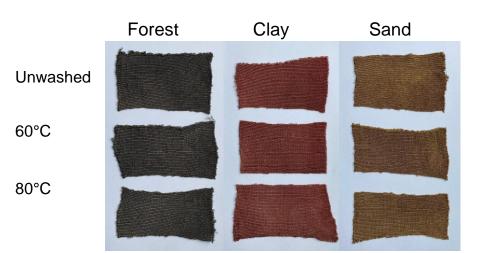
Conc. 0.86 Vol.% Conc. 0.18 Vol.% Conc. 0.08 Vol.% Forest Clay Sand


Färbung - Färbetemperatur

• Reduktion der Färbetemperatur von 60 °C auf 40 °C (c = 0.18 Vol.%, t = 30 min)

➤ Alle drei Earth-Colors®-Farbstoffe wiesen unabhängig von der Färbetemperatur einen ähnlichen Farbeindruck auf.



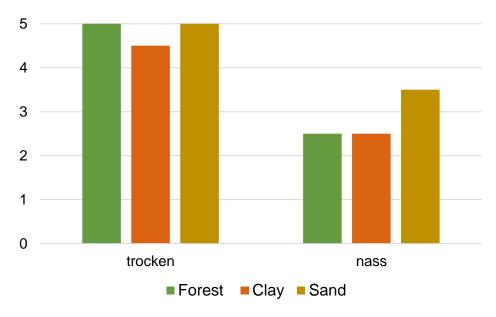

* K/S-Wert, gemessen am Maximum (Forest 580 nm, Clay 500 nm, Sand 580 nm)

Echtheit - Waschbarkeit

Waschbarkeit bei 60 °C und 80°C

- Beste Farbfixierung mit "Sand"
- Minimale Reduzierung der Farbtiefe mit Forest und Clay bei 60 und 80°C

Farbechtheit - Reibeechtheit

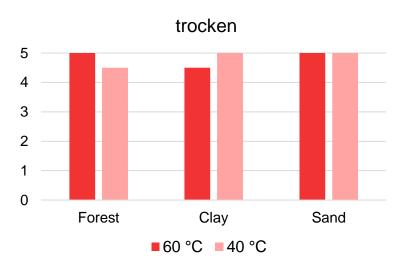

 Reibechtheit (Ausbluten von Baumwollreibgewebe)

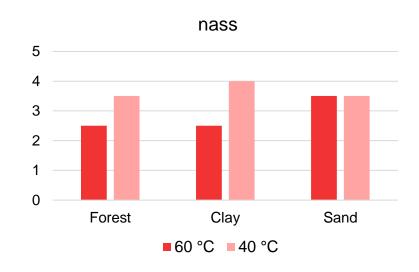
TROCKEN

➤ Hohe Reibechtheit unter trockenen Bedingungen nachgewiesen (unabhängig von der Farbstoffkonz.)

<u>NASS</u>

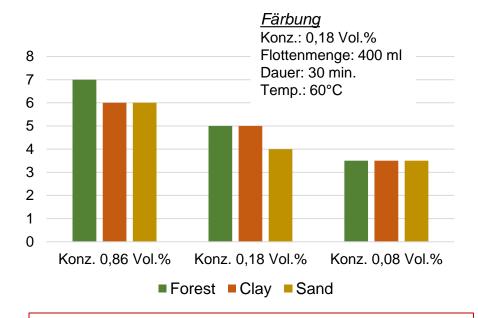
- > "Sand" höchste Reibechtheit
- ➤ Mit zunehmender Farbstoffkonz. höhere Reibechtheit




(Experimental: c = 0.18 Vol.%; $T = 60^{\circ}\text{C}$, time = 30 min)

Farbechtheit - Temperatur und Reibeechtheit

- Einfluss der Färbetemperatur auf die Reibechtheit
- Kein Einfluss unter trockenen Prüfbedingungen
- Erhöhte Nassreibechtheit durch niedrigere Färbetemperatur bei 40 °C


(Exper. c = 0.18 Vol.%; time = 30 min)

Farbechtheit - Lichtechtheit

• Farbechtheit bei 144 h Belichtung

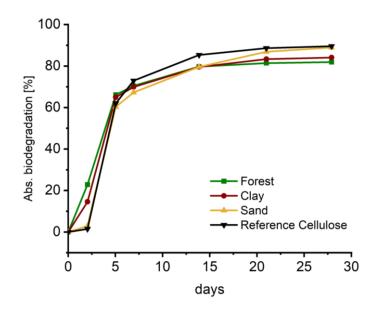
→ Geringere Lichtechtheit mit sinkender Farbstoffkonzentration

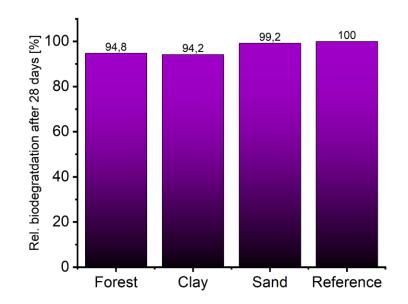

• Gewebe aus 100% HW wurden in torffreiem Boden getestet

0 Wochen

4 Wochen

8 Wochen


Fabrics:


c = 0.19 Vol.-%, t = 30 min., $T = 60 ^{\circ}\text{C}$

Abbaubarkeit der Stoffe

 Die aerobe biologische Abbaubarkeit der Prüfgegenstände Clay, Forest und Sand wurde in einem Meerwassertest gemäß ASTM D6691 (2017) bewertet.

Zusammenfassung

 Nachhaltige Spinntechnologie für Zellulosefilamente mit Wiederverwendung von Lösungsmittel und flexiblen Filamenteigenschaften


 Prozessoptimierung für erhöhte Farbtiefe und reduzierte Reibechtheit

- Nachgewiesene biologische Abbaubarkeit in der Meeresumwelt
- Zusatzstoffe und Co-Biopolymere können in die Spinnmasse eingearbeitet werden

